
1

Processor
technology

Riferimenti bibliografici

“Embedded System Design: A Unified Hardware/Software Introduction” , Frank Vahid,

Tony Givargis, John Wiley & Sons Inc., ISBN:0-471-38678-2, 2002.

“Computer architecture, a quantitative approach”, Hennessy & Patterson: (Morgan

Kaufmann eds.)

2

Processor technology

Application-specific

Registers

Custom

ALU

Datapath Controller

Program memory

Assembly code

for:

 total = 0

 for i =1 to …

Control logic

and State

register

Data

memory

IR PC

Single-purpose (“hardware”)

Datapath Controller

Control

 logic

State

register

Data

memory

index

total

+

IR PC

Register

file

General

ALU

Datapath Controller

Program

memory

Assembly code

for:

 total = 0

 for i =1 to …

Control

logic and

State register

Data

memory

General-purpose (“software”)

 The architecture of the computation engine used to implement a
system’s desired functionality

 Processor does not have to be programmable

 “Processor” not equal to general-purpose processor

3

Processor technology

total = 0;

for (i = 0; i< N; i++)

 total += M[i];

General-purpose

processor

Single-purpose

processor

Application-specific

processor

Desired

functionality

 Processors vary in their customization for the problem at hand

4

Single-purpose processors

• Digital circuit designed to execute exactly

one program
 a.k.a. coprocessor, accelerator or peripheral

• Features
 Contains only the components needed to

execute a single program

 No program memory

• Benefits
 Fast

 Low power
Small size

• Drawbacks

 No flexibility, high time-to-market, high NRE cost

Datapath Controller

Control

logic

State

register

Data

memory

index

total

+

Basic logic gates

Combinational components

Sequential components

Sequential Logic Design

Sequential Logic Design

Single-purpose processor design

Can be viewed as the design of a

system with 2 components:

• Datapath, which executes

operations required to the

system

• Control Unit, which generates

commands for datapath on

the basis of data inputs and

conditions

controller and datapath

controller datapath

…

…

external

control

outputs

external

control

inputs
…

external

data

 inputs

…

external

data

outputs

datapath

control

inputs

datapath

control

outputs

Sigle-purpose processor design

controller and datapath

controller datapath

…

…

external

control

outputs

external

control

inputs
…

external

data

 inputs

…

external

data

outputs

datapath

control

inputs

datapath

control

outputs

… …

a view inside the controller and datapath

controller datapath

… …

state

register

next-state

and

control

logic

registers

functional

units

Single-purpose processor design

flow

1. Processor Specifications (algorithmic

description)

2. Convert algorithm to “complex” state machine
 Known as FSMD: finite-state machine with datapath

 Can use templates to perform such conversion

3. Datapath design

4. Control unit design

Datapath design

Datapath design uses a library of components

Multiplexer

Decoder

Comparators

ALUs

Registers

Datapath Design

 The design the datapath requires, starting from the
specifications of the system, the realization of a schematic
that defines

 the necessary components;

 as components are connected;

 the conditions and the results produced;

 the control signals which must be produced by the control unit;

 In designing the datapath is necessary to take account of
some project constraints such as:

 maximum latency

 maximum area

 maximum power

Datapath design

 Create a register for any declared variable

 Create a functional unit for each arithmetic operation

 Connect the ports, registers and functional units

 Based on reads and writes

 Use multiplexors for multiple sources

 Create unique identifier

 for each datapath component control input and output

Control Unit Design

 Designing the control unit is equivalent to designing a

finite state machine (FSM)

 Identified states and control signals for the datapath,

the design of the control unit can be realized using

the methods of synthesis of synchronous sequential

circuits

Example

Specification:

while(1)

{while(start!=1);

 {total = 0;

 for (index = 0; index< N; index++)

 total += M[index];

 }

}

Total=0

Index=0

Index<N
Total=total+M[index)

index=index+1

Index==N

Start==1

Start!=1

Example

Initialize

total=0

index=0

ADD

total += M[index];

Index++

IDLE

start==1

Index< N

FSM:

start!=1

19

Single-purpose processors

+

Index

4

+

Total

Memory

rst

En

N
Compare

Cond

Control

Unit

Datapath
start

Control Unit Design

State rst en

IDLE 0 0

INIT 1 0

ADD 0 1

Example: Least common multiple

Specification

while(true)

 { Ready='1';

 do

 while(start!='1');

 ma=A; mb=B; Ready='0';

 while(ma!=mb)

 if(ma<mb)

 ma=ma+A;

 else

 mb=mb+B;

 Ris=ma;

 }

Example: Least common multiple

To design the datapath the following blocks are required:

 Registers (ma, mb and Ris)

 Comparatores for conditions (A!=B) and (A<B)

 Adders for ma=ma+A and for mb=mb+B

 Multiplexer for selecting inputs of registers ma (A or ma+A)

using SelA or mb (B or mb+B) using SelB

AND port for clock and a write enable for registers ma

(WriteA), mb (writeB) and Ris (WriteR)

Datapath Least common multiple

Mux
A

Reg
ma

+

!=

<

Mux
B

Reg
mb

+

selA

selB

A

B

writeA clk

writeB clk

Not_equal

less

FSM(Moore): Least common multiple

Idle
s0

Init
s1

Start='1'

Compare
s2

 ma=ma+A
s3

mb=mb+B
s4

Ris=ma
s5

not_equal=='0'

not_equal =='1'
less=='1'

not_equal =='1'
less==‘0'

FSM: outputs

S0 S1 S2 S3 S4 S5

SelA - 0 1 1 1 1

SelB - 0 1 1 1 1

WriteA 0 1 0 1 0 0

WriteB 0 1 0 0 1 0

WriteR 0 0 0 0 0 1

Ready 1 0 0 0 0 0

26

General-purpose processors

• Programmable device used in a variety
of applications
 Also known as “microprocessor”

• Features
 Program memory
 General datapath with large register file and

general ALU

• User benefits
 Low time-to-market and NRE costs
 High flexibility

• Drawbacks

 High unit cost

 Low Performance

IR PC

Register

file

General

ALU

Datapath Controller

Program

memory

Assembly code

for:

 total = 0

 for i =1 to …

Control

logic and

State register

Data

memory

Basic architecture

 Control unit and

datapath

 Note similarity to single-

purpose processor

 Key differences

 Datapath is general

 Control unit doesn’t store

the algorithm – the

algorithm is

“programmed” into the

memory

Datapath

 Load

 Read memory location
into register

• ALU operation

– Input certain registers
through ALU, store
back in register

• Store

– Write register to
memory location

Control Unit

 Control unit: configures the datapath
operations

 Sequence of desired operations
(“instructions”) stored in memory –
“program”

 Instruction cycle – broken into several
sub-operations, each one clock cycle,
e.g.:

 Fetch: Get next instruction into IR

 Decode: Determine what the instruction
means

 Fetch operands: Move data from
memory to datapath register

 Execute: Move data through the ALU

 Store results: Write data from register
to memory

Control Unit sub - operation

 Fetch

 Get next instruction

into IR

 PC: program

counter, always

points to next

instruction

 IR: holds the

fetched instruction

Control Unit sub - operation

 Decode

 Determine what the

instruction means

Control Unit sub - operation

 Fetch operands

 Move data from

memory to

datapath register

Control Unit - sub operation

 Execute

 Move data through

the ALU

 This particular

instruction does

nothing during this

sub-operation

Control Unit sub - operation

 Store results

 Write data from

register to memory

 This particular

instruction does

nothing during this

sub-operation

Instruction Cycles

Instruction Cycles

Instruction Cycles

Architectural Considerations

 N-bit processor

 N-bit ALU, registers,

buses, memory data

interface

 Embedded: 8-bit, 16-bit,

32-bit common

 Desktop/servers: 32-bit,

even 64

 PC size determines address

space

Architectural Considerations

 Clock frequency

 Inverse of clock

period

 Must be longer than

longest register to

register delay in

entire processor

 Memory access is

often the longest

40

General-purpose processors

Sequential DLX

P

C

M
U
X

IRead

Address

Data to

Write

Data to

Read

MEM

R
E
G

I
N
S
T
R

Reg. Rs

Reg. Rd

Data to

Write

Rs.

Data

M
U
X

M
U
X

Reg Rt

Rt.

Dati

M
U
X

M
U
X

A

L

U

Est.
Shift

S.2 bit

Zero

Ris.

R
E
G

F
I
L
E

Shift
S.2 bit

TA

R

G

ET

M

U

X

Control

Unit
RegDest

RegWrite
ALUSelB
ALUSelA
ALUop

TargetWrite
PCSource

Mem2Reg
IRWrite

MemWrite
MemRead

IorD
PCWrite
PCWriteCond

A

B

AluOutput Mem

Data

4

41

General-purpose processors

 addi r1, r0, 0

 addi r3, r0, 0

Loop: lw r4,M(r1)‏

 addi r1,r1,4

 slti r2, r1, 40

 add r3,r3,r4

 bnez r2, loop

total = 0;

for (i = 0; i< N; i++)

 total += M[i];

How to improve performance

 Improve frequency (depends on IC technology)

 They increase the number of instructions/data

executed in the same clock cycle

 Temporal parallelism (pipeline)

 Spatial parallelism

 Instruction Level Parallelism (Superscalar, VLIW, ..)

 Data level Parallelism (SIMD processors)

Pipelining

Performance optimization technique based on the overlap

of the execution of multiple instructions deriving from a

sequential execution flow.

• Pipelining exploits the parallelism among instructions

in a sequential instruction stream.

• Basic idea:

The execution of an instruction is divided into different

phases (pipelines stages), requiring a fraction of the time

necessary to complete the instruction.

• The stages are connected one to the next to form the

pipeline: instructions enter in the pipeline at one end,

progress through the stages, and exit from the other

end, as in an assembly line.

44

Pipelining: Increasing Instruction Throughput

IFetch 0

T0

IDec 0

T1

IExe 0

T2

IMem 0

T3

IWrB 0

T4

IFetch 1

T5

IDec 1

T6

IExe 1

T7

IMem 1

T8

IWrB 1

T9

IFetch 2

T10

IDec 3

T11

IFetch 0

T0

IDec 0

T1

IFetch 1

IExe 0

T2

IDec 1

IFetch 2

IMem 0

T3

IExe 1

IDec 2

IFetch 3

IWrB 0

T4

IMem 1

IExe 2

IDec 3

IFetch 4

IWrB 1

IMem 2

IExe 3

IDec 4

T5

IFetch 5

IWrB 2

IMem 3

IExe 4

T6

IDec 5

IFetch 6

IWrB 3

IMem 4

T7

IExe 5

IDec 6

IFetch 7

IWrB 4

T8

IMem 5

IExe 6

IDec 7

T9

IWrB 5

IMem 6

IExe 7

T10

IWrB 6

IMem 7

T11

IWrB 7

45

General-purpose processors

pipeline DLX

PC

Instruction

memory

In
st

ru
ct

io
n

Add

Instruction

[20–16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction

[15–0]

0

0

M

u

x

0

1

Add
Add

result

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1

ALU

result

Zero

Write

data

Read

data

M

u

x

1

ALU

control

Shift

left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction

[15–11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M

u

x

0

1

M
em

W
rit

e

Address

Data

memory

Address

The Problem of Hazards

• A hazard is created whenever there is a dependence

between instructions, and instructions are close enough that

the overlap caused by pipelining would change the order of

access to the operands involved in the dependence.

• Hazards prevent the next instruction in the pipeline from

executing during its designated clock cycle.

• Hazards reduce the performance from the ideal speedup

gained by pipelining.

Three Classes of Hazards

• Structural Hazards: Attempt to use the same resource

from different instructions simultaneously

- Example: Single memory for instructions and data

• Data Hazards: Attempt to use a result before it is

ready

- Example: Instruction depending on a result of a

previous instruction still in the pipeline

• Control Hazards: Attempt to make a decision on the

next instruction to execute before the condition is

evaluated

- Example: Conditional branch execution

Structural hardware

 Two solutions

 Hardware duplication

 Insertion of “bubbles” or stalls in the pipeline

Data Hazards

Data Hazards

 Compilation techniques

 Insertion of nop (no operation) instructions

 Instructions Scheduling to avoid that correlating

instructions are too close

 The compiler tries to insert independent instructions among

correlating instructions

 When the compiler does not find independent instructions, it

Insert nops.

 Hardware techniques

 Insertion of “bubbles” or stalls in the pipeline

 Data Forwarding or Bypassing

Data Forwarding

Forwarding implementation

Forwarding implementation

Data hazard with lw

Data hazard with lw

1 stall cycle is required

Hazard Detection Unit

Data Hazards

Data hazards analyzed up to now are:

– RAW (READ AFTER WRITE) hazards:

instruction n+1 tries to read a source register before the

previous instruction n has written it in the RF.

Example:

add $r1, $r2, $r3

sub $r4, $r1, $r5

• By using forwarding, it is always possible to solve this conflict

without introducing stalls, except for the load/use hazards

where it is necessary to add one stall

Data Hazards

 Other types of data hazards in the pipeline:

 WAW (WRITE AFTER WRITE)

 WAR (WRITE AFTER READ)

Data Hazard: Write After Write

 Instruction n+1 tries to write a destination operand before

it has been written by the previous instruction n

⇒ write operations executed in the wrong order

 This type of hazards could not occur in the MIPS pipeline

because all the register write operations occur in the WB

stage and instructions are completed in order

n: lw $r1, 0($r2)

n+1: add $r1,$r2,$r3

Data Hazard: Write After Write

 Example: If we assume the register write in the ALU instructions

occurs in the fourth stage and that load instructions require two

stages (MEM1 and MEM2) to access the data memory, we can

have:

IFetch

T0

IDec

T1

IExe

T2

IMem 1

T3

IMem 2

T4

IWB

T5

IFetch IDec IExe IWB

lw $r1, 0($r2)

add $r1,$r2,$r3

Data Hazard: Write After Read

 Instruction n+1 tries to write a destination operand before it

has been read from the previous instruction n

 ⇒ instruction n reads the wrong value.

 This type of hazards could not occur in the MIPS pipeline

because the operand read operations occur in the ID stage

and the write operations in the WB stage.

n: sw $r1, 0($r2)

n+1: add $r2, $r3, $4

Data Hazard: Write After Read

 As before, if we assume the register write in the ALU

instructions occurs in the fourth stage and that we need two

stages to access the data memory, some instructions could read

operands too late in the pipeline.

 Example: Instruction sw reads $r2 in the second half of MEM2

stage and instruction add writes $r2 in the first half of WB

stage ⇒ sw reads the new value of $r2.

IFetch

T0

IDec

T1

IExe

T2

IMem 1

T3

IMem 2

T4

IWB

T5

IFetch IDec IExe IWB

sw $r1, 0($r2)

add $r2, $r3, $4

Control Hazards

 Control hazards: Attempt to make a decision on the

next instruction to fetch before the branch condition is

evaluated.

 Control hazards arise from the pipelining of

conditional branches and other instructions changing

the PC.

 Control hazards reduce the performance from the

ideal speedup gained by the pipelining since they

can make it necessary to stall the pipeline.

Branch hazards

 To feed the pipeline we need to fetch a new instruction at each

clock cycle, but the branch decision (to change or not change

the PC) is taken during the MEM stage.

PC

Instruction

memory

In
str

uc
tio

n

Add

Instruction

[20–16]

M
em

to
Re

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction

[15–0]

0

0

M

u

x

0

1

Add
Add

result

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1

ALU

result

Zero

Write

data

Read

data

M

u

x

1

ALU

control

Shift

left 2

Re
gW

rit
e

MemRead

Control

ALU

Instruction

[15–11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M

u

x

0

1

M
em

W
rit

e

Address

Data

memory

Address

Branch hazards

 This delay to determine the correct instruction to fetch is

called Control Hazard or Conditional Branch Hazard

 If a branch changes the PC to its target address, it is a

taken branch

 If a branch falls through, it is not taken or untaken.

Branch hazards: solutions

 To stall the pipeline until the branch decision is taken (stalling until

resolution) and then fetch the correct instruction flow.

 If the branch is not taken, the three cycles penalty is not justified ⇒

throughput reduction.

IF Branch successor + 5

ID IF Branch successor + 4

EX ID IF Branch successor + 3

MEM EX ID IF Branch successor + 2

WB MEM EX ID IF Branch successor + 1

WB MEM EX ID IF stall stall IF Branch successor

WB MEM EX ID IF Branch instruction

Branch hazards: solutions

 We can assume the branch not taken, and flush the next 3

instructions in the pipeline only if the branch will be taken.

PC

Instruction

memory

In
st

ru
ct

io
n

Add

Instruction

[20–16]

M
em

to
Re

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction

[15–0]

0

0

M

u

x

0

1

Add
Add

result

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1

ALU

result

Zero

Write

data

Read

data

M

u

x

1

ALU

control

Shift

left 2

Re
gW

rit
e

MemRead

Control

ALU

Instruction

[15–11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M

u

x

0

1

M
em

W
rit

e

Address

Data

memory

Address

flush
flush

flush

Early Evaluation of the PC

 To improve performance in case of branch hazards,

we need to add hardware resources to:

 Compare registers

 Compute branch target address

 Update the PC register as soon as possible in the

pipeline.

 MIPS processor compares registers, computes

branch target address and updates PC during ID

stage.

Early Evaluation of the PC

Data

A L U

S i g n
e x t e n d

memory

PC

Instruction
memory

A D D

A D D

IF/ID

4

ID/EX

EX/MEM MEM/WB

I R 6 . . 1 0

MEM/WB.IR

I R 1 1 . . 1 5

R e g i s t e r s

Zero?

M
u
x

M
u
x

M
u
x

IR

Branch Prediction Techniques

 Main goal of branch prediction techniques: try to predict ASAP

the result of a branch instruction.

 In general, the problem of the branch prediction becomes worse

for deeply pipelined processors because the cost of incorrect

predictions increases

 The performance of a branch prediction technique depends on:

 Accuracy measured in terms of percentage of incorrect predictions.

 Cost of a incorrect prediction measured in terms of time lost to

execute useless instructions (misprediction penalty).

 We also need to consider branch frequency: the importance of

accurate branch prediction is higher in programs with higher

branch frequency.

Branch Prediction Techniques

 There are many methods to deal with the performance loss

due to branch hazards:

 Static Branch Prediction Techniques: The actions for a branch are

fixed for each branch during the entire execution. The actions are

fixed at compile time.

 Dynamic Branch Prediction Techniques: The decision causing the

branch prediction can change during the program execution.

 In both cases, care must be taken not to change the processor

state until the branch is definitely known.

Static Branch Prediction Techniques

 Branch Always Not Taken (Predicted-Not-Taken)

 Execute successor instructions in sequence

 “Squash” instructions in pipeline if branch actually taken

 Advantage of late pipeline state update

 47% DLX branches not taken on average

 Branch Always Taken (Predicted-Taken)

 53% DLX branches taken on average

 But haven’t calculated branch target address in MIPS

 DLX still incurs 1 cycle branch penalty

 Other machines: branch target known before outcome

 Backward Taken Forward Not Taken (BTFNT)

Static Branch Prediction Techniques

 Delayed Branch

 The instruction in the branch delay slot is executed whether or not the

branch is taken.

 The compiler statically schedules an independent instruction in the branch

delay slot.

Branch delay slot

(a) From before (b) From target (c) From fall through

SUB R4, R5, R6

ADD R1, R2, R3

if R1 = 0 then

ADD R1, R2, R3

if R1 = 0 then

SUB R4, R5, R6

ADD R1, R2, R3

if R1 = 0 then

 SUB R4, R5, R6

ADD R1, R2, R3

if R1 = 0 then

 SUB R4, R5, R6

ADD R1, R2, R3

if R2 = 0 then

if R2 = 0 then

 ADD R1, R2, R3

Becomes Becomes Becomes

Delay slot

Delay slot

Delay slot

SUB R4,R5,R6

Dynamic Branch Prediction

 Basic Idea: To use the past branch behavior to

predict the future.

 We use hardware to dynamically predict the

outcome of a branch: the prediction will depend on

the behavior of the branch at run time and will

change if the branch changes its behavior during

execution.

Dynamic Branch Prediction

 Dynamic branch prediction is based on two interactive

mechanism:

 Branch Outcome Predictor:

 To predict the direction of a branch (i.e. taken or not taken).

 Branch Target Predictor:

 To predict the branch target address in case of taken

branch.

 These modules are used by the Instruction Fetch Unit to

predict the next instruction to read in the I-cache.

 If branch is not taken ⇒ PC is incremented.

 If branch is taken ⇒ BTP gives the target address

Branch Prediction Buffers

 The simplest thing to do with a branch is to predict
whether or not it is taken.

 This helps in pipelines where the branch delay is longer
than the time it takes to compute the possible target
PCs .
 If we can save the decision time, we can branch sooner.

 Note that this scheme does NOT help with the MIPS we
studied.
 Since the branch decision and target PC are computed in ID, assuming

there is no hazard on the register tested.

Branch-Prediction Buffers
One-bit Prediction Scheme

 Is a buffer (cache) (BHT - Branch History Table) indexed by the

lower portion of the address of the branch instruction

• The memory contains a bit that says whether the branch was

recently taken or not

• It has no tag

 It may have been put there by another branch (that has the same low-

order address bits)

• The prediction is a hint that is presumed to be correct, and fetching

begins in the predicted direction

 If the hint turns out to be wrong, the prediction bit is inverted and stored

back

 The branch direction could be incorrect because:
• misprediction

• Instruction mismatch

• In either case, the worst that happens is that you have to pay the full

latency for the branch.

 Consider a loop branch whose behavior is taken nine times in a row,

then not taken once. What is the prediction accuracy for this branch,

assuming the prediction bit for this branch remains in the prediction

buffer?

Branch Prediction

Taken ?

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken

Taken Not taken

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken

Taken Not taken

Taken Taken

Taken Taken

… …

 The prediction accuracy for this branch that is

taken 90% of the time is only 80% (two

incorrect predictions and eight correct ones).

Branch-Prediction Buffers
One-bit Prediction Scheme

Branch-Prediction Buffers
Two-bit Prediction Scheme

 A prediction must miss twice before is changed

 The prediction accuracy for this branch that is

taken 90% of the time is 90% (one incorrect

predictions and nine correct ones)

 The two-bit scheme is actualy a specialization of

a more general scheme that has n-bit saturating

counter for each entry in the prediction buffer

Branch Prediction

Taken ?

Taken ?

Taken Taken

… Taken

Taken Taken

Not taken Taken (miss)

Taken Taken

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken (miss)

Taken Taken

Taken Taken

Taken Taken

… …

Predict

taken

Predict

taken

Predict

not taken

Predict

not taken

Taken

Not taken

Not taken

Taken

Not taken

Taken

Taken Not taken

n-bit Branch History Table

 Generalization: n-bit saturating counter for each entry in the

prediction buffer. •

 The counter can take on values between 0 and 2 n-1 •

 When the counter is greater than or equal to one-half of its maximum

value (2 n-1), the branch is predicted as taken. •

 Otherwise, it is predicted as untaken.

 As in the 2-bit scheme, the counter is incremented on a taken

branch and decremented on an untaken branch.

 Studies on n-bit predictors have shown that 2-bit predictors

behave almost as well

Branch Prediction Buffer

 A branch prediction buffer can be implemented as

A small special cache accessed with the instruction address during

the IF pipe stage

A pair of bits attached to each block in the instruction cache and

fetched with the instruction

 While this scheme is useful for most pipelines, the DLX

pipeline finds out both whether the branch is taken and

what the target of the branch is at roughly the same time

Branch Prediction Buffer

1%

0%

1%

5%

9%

9%

12%

5%

18%

10%

0%

0%

0%

5%

9%

9%

11%

5%

18%

10%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

S
P

E
C

8
9
 b

e
n

c
h

m
a

rk
s

Frequency of mispredictions

4096 entries: 2 bit per entry Unlimited entries: 2 bits per entry

84

Correlating Branches

Code example showing

the potential

If (d==0)

 d=1;

If (d==1)

 …

Assemble code

 BNEZ R1, L1

 DADDIU R1,R0,#1

L1: DADDIU R3,R1,#-1

 BNEZ R3, L2

L2:

… Observation: if BNEZ1 is not taken, then BNEZ2
is taken

Correlating Branch Predictor

 Idea: taken/not taken of
recently executed branches is
related to behavior of next
branch (as well as the history
of that branch behavior)

 Then behavior of recent
branches selects between,
say, 2 predictions of next
branch, updating just that
prediction

 (1,1) predictor: 1-bit global,
1-bit local

Branch address (4 bits)

1-bits per branch
local predictors

Prediction

1-bit global
branch history
(0 = not taken)

Correlating Branch Predictor

 General form: (m, n) predictor

 m bits for global history, n
bits for local history

 Records correlation between
m+1 branches

 Simple implementation:
global history can be store
in a shift register

 Example: (2,2) predictor, 2-
bit global, 2-bit local

Branch address (4 bits)

2-bits per branch
local predictors

Prediction

2-bit global
branch history

(01 = not taken then taken)

Accuracy v. Size (SPEC89)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

C
o
n
d
it
io

n
a
l b

ra
n
c
h
 m

is
p
re

d
ic

ti
o
n
 r
a
te

Total predictor size (Kbits)

Local

Correlating

Return Addresses Prediction

 Register indirect branch hard to predict address

 Many callers, one callee

 Jump to multiple return addresses from a single address (no

PC-target correlation)

 SPEC89 85% such branches for procedure return

 Since stack discipline for procedures, save return

address in small buffer that acts like a stack: 8 to 16

entries has small miss rate

89

Accuracy of Return Address Predictor

Branch-Target Buffers

 To reduce the branch penalty on DLX, we need to

know from what address to fetch by the end of IF

If the instruction is a branch and we know what the next

PC should be, we can have a branch penalty of zero!

Branch-Target Buffer (BTB)

Is a cache that stores the predicted address for the next

instruction after a branch

It is accessed during the IF stage using the instruction

address of the fetched instruction

It only stores the predicted-taken brances

Branch Target Buffer

 Branch Target Buffer (BTB): Address of branch index to get prediction AND branch

address (if taken)

 Note: must check for branch match now, since can’t use wrong branch address

Branch PC Predicted PC

=?

PC
 of instruction

F
E
T
C
H

Predict taken or untaken

BTB

 Allocation

 Allocate instructions identified as branches (after decode)

 Both conditional and unconditional branches are allocated

 Not taken branches need not be allocated

 BTB miss implicitly predicts not-taken

 Prediction

 BTB lookup is done parallel to IC lookup

 BTB provides

 Indication that the instruction is a branch (BTB hits)

 Branch predicted target

 Branch predicted direction

 Branch predicted type (e.g., conditional, unconditional)

 Update (when branch outcome is known)

 Branch target

 Branch history (taken / not-taken)

BTB (cont.)

 Wrong prediction

 Predict not-taken, actual taken

 Predict taken, actual not-taken

 In case of wrong prediction – flush the pipeline

 Reset latches (same as making all instructions to be NOPs)

 Select the PC source to be from the correct path

 Need get the fall-through with the branch

 Start fetching instruction from correct path

Adding a BTB to the Pipeline

ALUSrc

6

ALU
result

Zero

+
Shift

left 2

ALU

Control

ALUOp

RegDst

RegWrite

Read

reg 1

Read

reg 2

Write

reg

Write

data

Read

data 1

Read

data 2

R
e
g

is
te

r
F

il
e

[15-0]

[20-16]

[15-11]

Sign

extend
16 32

ID/EX

EX/MEM
MEM

/WB
In

s
tr

u
c
ti

o
n

MemRead

MemWrite

Address

Write

Data

Read

Data

Data

Memory

Branch

PCSrc

MemtoReg

4
+

IF/ID

PC

0

1

m

u

x

0

1

m

u

x

0

m

u

x

1

0

m

u

x

Inst.

Memory

Address

Instruction

BTB

1

2

pred target

pred dir

PC+4 (Not-taken target)

taken target

3

Mispredict

Detection

Unit

Flush

predicted target

PC+4 (Not-taken target)

predicted direction

−
4

address

target

direction

a
llo

c
/u

p
d

t

Using The BTB

PC moves to next instruction

Inst Mem gets PC

and fetches new inst

BTB gets PC

and looks it up

IF/ID latch loaded

with new inst

BTB Hit ?

Br taken ?

PC  PC + 4 PC  perd addr

IF

ID
IF/ID latch loaded

with pred inst

IF/ID latch loaded

with seq. inst Branch ?

yes no

no yes

no yes EXE

Using The BTB (cont.)

ID

EXE

MEM

WB

Branch ?

Calculate br

cond & trgt

Flush pipe &

update PC

Corect

pred ?

yes no

IF/ID latch loaded

with correct inst

continue

Update BTB

yes no

continue

Performance Improvement

• Performance can be improved by:

– Faster clock (but there’s a limit)‏

– Pipelining: slice up instruction into stages, overlap stages

– Multiple ALUs to support more than one instruction
stream

Superscalar

 Multiple ALU which can operate in parallel

 Fetches instructions in batches,

 Executes as many as possible instructions

 Instructions without hazards can be executed in
parallel

 May require extensive hardware to detect
independent instructions (dynamic scheduling)

 Out of order execution

 Illusion of in order sequential execution (from
the point of view of programmer/compiler

 A superscalar implementation does not change
instruction Set Architecture

Superscalar

I Issue

E
int

E

FP add

E

FPmul1

E

FPmul2

W

1

7

4

24E

FP div

7

M

ScoreboardScoreboard

R

R

R

R

RCompletes when:
•Funcional unit is

not busy
•Destination
register not

pending (prevent
WAW)

Completes when:
•Source operand is
ready

Completes when:
•No func.unit is
waiting for this

register from a
different func.unit

VLIW

• Each word in memory has multiple independent

instructions

• Rely on software for identifying potential parallelism

and schedule instructions (static scheduling)

• Processors expect dependency-free code generated

by the compiler

• No hardware scheduler, no hardware management of

hazards

• VLIW can be smaller, cheaper, and require less

power to operate

• Currently growing in popularity

VLIW

Instruction

Register

102

Two Memory Architectures

Processor

Program

memory

Data

memory

Processor

Memory

(program and data)

Harvard Princeton

 Princeton

 Fewer memory wires

 Harvard

 Simultaneous

program and data

memory access

103

Cache Memory

 Memory access may be slow

 Cache is small but fast

memory close to processor

 Holds copy of part of

memory

 Hits and misses

Processor

Memory

Cache

Fast/expensive technology,

usually on the same chip

Slower/cheaper technology,

usually on a different chip

104

Programmer’s View

 Programmer doesn’t need detailed understanding of

architecture

 Instead, needs to know what instructions can be executed

 Two levels of instructions:

 Assembly level

 Structured languages (C, C++, Java, etc.)

 Most development today done using structured languages

 But, some assembly level programming may still be necessary

 Drivers: portion of program that communicates with and/or controls

(drives) another device

 Often have detailed timing considerations, extensive bit manipulation

 Assembly level may be best for these

105

Assembly-Level Instructions

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

...

Instruction 1

Instruction 2

Instruction 3

Instruction 4

 Instruction Set

 Defines the legal set of instructions for that processor

 Data transfer: memory/register, register/register, I/O, etc.

 Arithmetic/logical: move register through ALU and back

 Branches: determine next PC value when not just PC+1

106

A Simple (Trivial) Instruction Set

 opcode operands

MOV Rn, direct

MOV @Rn, Rm

ADD Rn, Rm

0000 Rn direct

0010 Rn

0100 Rm Rn

Rn = M(direct)

Rn = Rn + Rm

SUB Rn, Rm 0101 Rm Rn = Rn - Rm

MOV Rn, #immed. 0011 Rn immediate Rn = immediate

Assembly instruct. First byte Second byte Operation

JZ Rn, relative 0110 Rn relative PC = PC+ relative

 (only if Rn is 0)

Rn

MOV direct, Rn 0001 Rn direct M(direct) = Rn

Rm M(Rn) = Rm

Mem Direct

Mem Direct

Register indirect

Immediate

Register direct

Register direct

107

Addressing Modes

Data

Immediate

Register-direct

Register

indirect

Direct

Indirect

Data

Operand field

Register address

Register address

Memory address

Memory address

Memory address Data

Data

Memory address

Data

Addressing

mode

Register-file

contents

Memory

contents

108

Sample Programs

int total = 0;

for (int i=10; i!=0; i--)

 total += i;

// next instructions...

C program

MOV R0, #0; // total = 0

MOV R1, #10; // i = 10

JZ R1, Next; // Done if i=0

ADD R0, R1; // total += i

MOV R2, #1; // constant 1

JZ R3, Loop; // Jump always

Loop:

Next: // next instructions...

SUB R1, R2; // i--

Equivalent assembly program

MOV R3, #0; // constant 0

0

1

2

3

5

6

7

 Try some others

 Handshake: Wait until the value of M[254] is not 0, set M[255] to 1, wait
until M[254] is 0, set M[255] to 0 (assume those locations are ports).

 (Harder) Count the occurrences of zero in an array stored in memory
locations 100 through 199.

109

Programmer Considerations

 Program and data memory space

 Embedded processors often very limited

 e.g., 64 Kbytes program, 256 bytes of RAM (expandable)

 Registers: How many are there?

 Only a direct concern for assembly-level programmers

 I/O

 How communicate with external signals?

 Interrupts

110

Microprocessor Architecture

Overview

 If you are using a particular microprocessor, now is

a good time to review its architecture

111

Example: parallel port driver

 Using assembly language programming we can configure a PC

parallel port to perform digital I/O

 write and read to three special registers to accomplish this table provides

list of parallel port connector pins and corresponding register location

 Example : parallel port monitors the input switch and turns the LED on/off

accordingly

PC Parallel port

Pin 13

Pin 2

Switch

LED

LPT Connection Pin I/O Direction Register Address

1 Output 0th bit of register #2

2-9 Output 0th bit of register #2

14,16,17 Output 1,2,3th bit of register #2

10,11,12,13,15 Input 6,7,5,4,3th bit of register #1

112

Parallel Port Example

; This program consists of a sub-routine that reads

; the state of the input pin, determining the on/off state

; of our switch and asserts the output pin, turning the LED

; on/off accordingly

 .386

CheckPort proc

 push ax ; save the content

 push dx ; save the content

 mov dx, 3BCh + 1 ; base + 1 for register #1

 in al, dx ; read register #1

 and al, 10h ; mask out all but bit # 4

 cmp al, 0 ; is it 0?

 jne SwitchOn ; if not, we need to turn the LED on

SwitchOff:

 mov dx, 3BCh + 0 ; base + 0 for register #0

 in al, dx ; read the current state of the port

 and al, f7h ; clear first bit (masking)

 out dx, al ; write it out to the port

 jmp Done ; we are done

SwitchOn:

 mov dx, 3BCh + 0 ; base + 0 for register #0

 in al, dx ; read the current state of the port

 or al, 01h ; set first bit (masking)

 out dx, al ; write it out to the port

Done: pop dx ; restore the content

 pop ax ; restore the content

CheckPort endp

extern “C” CheckPort(void); // defined in

 // assembly

void main(void) {

 while(1) {

 CheckPort();

 }

}

LPT Connection Pin I/O Direction Register Address

1 Output 0th bit of register #2

2-9 Output 0th bit of register #2

14,16,17 Output 1,2,3th bit of register #2

10,11,12,13,15 Input 6,7,5,4,3th bit of register

#1

PC Parallel port

Pin 13

Pin 2

Switch

LED

113

Operating System

 Optional software layer
providing low-level services to
a program (application).

 File management, disk access

 Keyboard/display interfacing

 Scheduling multiple programs
for execution

 Or even just multiple threads from
one program

 Program makes system calls to
the OS

DB file_name “out.txt” -- store file name

MOV R0, 1324 -- system call “open” id

MOV R1, file_name -- address of file-name

INT 34 -- cause a system call

JZ R0, L1 -- if zero -> error

 . . . read the file

JMP L2 -- bypass error cond.

L1:

 . . . handle the error

L2:

Development Environment

 Development processor

 The processor on which we write and debug our programs

 Usually a PC

 Target processor

 The processor that the program will run on in our embedded system

 Often different from the development processor

Development processor Target processor

115

Software Development Process

Compiler

Linker

C File C File Asm.

File

Binary

File

Binary

File

Binary

File

Exec.

File

Assemble

r

Library

Implementation Phase

Debugger

Profiler

Verification Phase

 Compilers

 Cross compiler

 Runs on one

processor, but

generates code

for another

 Assemblers

 Linkers

 Debuggers

 Profilers

116

Running a Program

 If development processor is different than target,

how can we run our compiled code? Two options:

 Download to target processor

 Simulate

 Simulation

 One method: Hardware description language

 But slow, not always available

 Another method: Instruction set simulator (ISS)

 Runs on development processor, but executes instructions of

target processor

117

Instruction Set Simulator For A

Simple Processor
#include <stdio.h>

typedef struct {

 unsigned char first_byte, second_byte;

} instruction;

instruction program[1024]; //instruction memory

unsigned char memory[256]; //data memory

void run_program(int num_bytes) {

 int pc = -1;

 unsigned char reg[16], fb, sb;

 while(++pc < (num_bytes / 2)) {

 fb = program[pc].first_byte;

 sb = program[pc].second_byte;

 switch(fb >> 4) {

 case 0: reg[fb & 0x0f] = memory[sb]; break;

 case 1: memory[sb] = reg[fb & 0x0f]; break;

 case 2: memory[reg[fb & 0x0f]] =

 reg[sb >> 4]; break;

 case 3: reg[fb & 0x0f] = sb; break;

 case 4: reg[fb & 0x0f] += reg[sb >> 4]; break;

 case 5: reg[fb & 0x0f] -= reg[sb >> 4]; break;

 case 6: pc += sb; break;

 default: return –1;

}

 }

 return 0;

}

int main(int argc, char *argv[]) {

 FILE* ifs;

 If(argc != 2 ||

 (ifs = fopen(argv[1], “rb”) == NULL) {

 return –1;

 }

 if (run_program(fread(program,

 sizeof(program) == 0) {

 print_memory_contents();

 return(0);

 }

 else return(-1);

}

118

Testing and Debugging

Implementation

Phase

Implementation

Phase

Verification

Phase

Verification

 Phase

Emulator

Debugger

/ ISS

Programmer

Development processor

(a) (b)

External tools

 ISS

 Gives us control over time – set
breakpoints, look at register
values, set values, step-by-step
execution, ...

 But, doesn’t interact with real
environment

 Download to board

 Use device programmer

 Runs in real environment, but
not controllable

 Compromise: emulator

 Runs in real environment, at
speed or near

 Supports some controllability
from the PC

119

Application-specific processors

• Programmable processor optimized for a

particular class of applications having common

characteristics
 Compromise between general-purpose and single-

purpose processors

• Features
 Program memory

 Optimized datapath

 Special functional units

• Benefits
 Some flexibility, good performance, size and power

• Drawbacks

 High NRE cost (processor and compiler)‏

• Examples: Microcontroller, DSP

IR PC

Registers

Custom

ALU

Datapath Controller

Program

memory

Assembly code

for:

 total = 0;

 for(i =0;i<N;i++)

 total+=M[i];

Control

logic and

State register

Data

memory

120

Application-Specific Instruction-Set

Processors (ASIPs)

 General-purpose processors

 Sometimes too general to be effective in demanding
application

 e.g., video processing – requires huge video buffers and
operations on large arrays of data, inefficient on a GPP

 But single-purpose processor has high NRE, not
programmable

 ASIPs – targeted to a particular domain

 Contain architectural features specific to that domain

 e.g., embedded control, digital signal processing, video
processing, network processing, telecommunications, etc.

 Still programmable

A Common ASIP: Microcontroller

• For embedded control applications
– Reading sensors, setting actuators

– Mostly dealing with events (bits): data
is present, but not in huge amounts

– e.g., VCR, disk drive, digital camera
(assuming SPP for image
compression), washing machine,
microwave oven

•Microcontroller features
– On-chip peripherals

• Timers, analog-digital converters, serial communication, etc.

• Tightly integrated for programmer, typically part of register
space

– On-chip program and data memory

– Direct programmer access to many of the chip’s pins

– Specialized instructions for bit-manipulation and other low-
level

Digital Signal Processors (DSP)‏

• For signal processing applications

– Large amounts of digitized data, often streaming

– Data transformations must be applied fast

– e.g., cell-phone voice filter, digital TV, music synthesizer

• DSP features

– Several instruction execution units

– Multiple-accumulate single-cycle instruction, other instrs.

– Efficient vector operations – e.g., add two arrays

• Vector ALUs, loop buffers, etc.

Trend: Even More Customized ASIPs

 In the past, microprocessors were acquired as chips

 Today, we increasingly acquire a processor as Intellectual
Property (IP)

 e.g., synthesizable VHDL model

 Opportunity to add a custom datapath hardware and a few
custom instructions, or delete a few instructions

 Can have significant performance, power and size impacts

 Problem: need compiler/debugger for customized ASIP

 Remember, most development uses structured languages

 One solution: automatic compiler/debugger generation

 e.g., www.tensillica.com

 Another solution: retargettable compilers

 e.g., www.improvsys.com (customized VLIW architectures)

http://www.tensillica.com/
http://www.improvsys.com/

