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technology 
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Processor technology 
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General-purpose (“software”)  

 The architecture of the computation engine used to implement a 
system’s desired functionality 

 Processor does not have to be programmable 

 “Processor” not equal to general-purpose processor 
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Processor technology 

total = 0; 

for (i = 0; i< N; i++)  

   total += M[i]; 
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 Processors vary in their customization for the problem at hand 
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Single-purpose processors 

• Digital circuit designed to execute exactly 

one program 
 a.k.a. coprocessor, accelerator or peripheral 

• Features 
 Contains only the components needed to 

execute a single program 

 No program memory 

• Benefits 
 Fast 

 Low power 
Small size 

• Drawbacks 

 No flexibility, high time-to-market, high NRE cost 
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Basic logic gates 



Combinational components 



Sequential components 



Sequential Logic Design 



Sequential Logic Design 



Single-purpose processor design 

Can be viewed as the design of a 

system with 2 components: 

• Datapath, which executes 

operations required to the 

system 

• Control Unit, which generates 

commands for datapath on 

the basis of data inputs and 

conditions 
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Sigle-purpose processor design 
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Single-purpose processor design 

flow 

 

1. Processor Specifications ( algorithmic 

description) 

2. Convert algorithm to “complex” state machine 
 Known as FSMD: finite-state machine with datapath 

 Can use templates to perform such conversion 

3. Datapath design 

4. Control unit design 

 

 



Datapath design 

Datapath design uses a library of components 

Multiplexer 

Decoder 

Comparators 

ALUs 

Registers 

 

 



Datapath Design 

 The design the datapath requires, starting from the 
specifications of the system, the realization of a schematic 
that defines 

 the necessary components; 

 as components are connected; 

 the conditions and the results produced; 

 the control signals which must be produced by the control unit; 

 

 In designing the datapath is necessary to take account of 
some project constraints such as: 

 maximum latency 

 maximum area 

 maximum power 



Datapath design 

 Create a register for any declared variable 

 Create a functional unit for each arithmetic operation 

 Connect the ports, registers and functional units 

 Based on reads and writes 

 Use multiplexors for multiple sources 

 Create unique identifier  

 for each datapath component control input and output 



Control Unit Design 

 Designing the control unit is equivalent to designing a 

finite state machine (FSM) 

 Identified states and control signals for the datapath, 

the design of the control unit can be realized using 

the methods of synthesis of synchronous sequential 

circuits 



Example 

Specification:  

 

while(1) 

{while(start!=1); 

 {total = 0; 

   for (index = 0; index< N; index++)  

   total += M[index]; 

  } 

} 

Total=0 

Index=0 

Index<N 
Total=total+M[index) 

index=index+1 

Index==N 

Start==1 

Start!=1 



Example 

Initialize 

total=0 

index=0 

ADD 

total += M[index]; 

Index++ 

IDLE 

start==1 

Index< N 

FSM:  

start!=1 
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Single-purpose processors 
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Control Unit Design 

State rst en 

IDLE 0 0 

INIT 1 0 

ADD 0 1 



Example: Least common multiple 

Specification 

 
while(true) 

 { Ready='1'; 

   do 

   while(start!='1'); 

   ma=A; mb=B; Ready='0'; 

   while(ma!=mb) 

    if(ma<mb)  

     ma=ma+A; 

   else 

       mb=mb+B; 

   Ris=ma; 

  } 



Example: Least common multiple 

To design the datapath the following blocks are required: 

 Registers  (ma, mb and Ris)  

 Comparatores for conditions (A!=B) and (A<B) 

 Adders for  ma=ma+A and for mb=mb+B 

 Multiplexer for selecting inputs of registers ma ( A or ma+A) 

using SelA or mb (B or mb+B) using  SelB 

AND port for clock and a write enable for registers ma 

(WriteA),  mb (writeB) and  Ris (WriteR) 

 

 



Datapath Least common multiple 
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FSM(Moore): Least common multiple 

Idle 
s0 

Init 
s1 

Start='1' 

Compare 
s2 

 ma=ma+A 
s3 

mb=mb+B 
s4 

Ris=ma 
s5 

not_equal=='0' 

not_equal =='1' 
less=='1' 

not_equal =='1' 
less==‘0' 



FSM: outputs 

S0 S1 S2 S3 S4 S5 

SelA - 0 1 1 1 1 

SelB - 0 1 1 1 1 

WriteA 0 1 0 1 0 0 

WriteB 0 1 0 0 1 0 

WriteR 0 0 0 0 0 1 

Ready 1 0 0 0 0 0 
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General-purpose processors 

• Programmable device used in a variety 
of applications 
 Also known as “microprocessor” 

• Features 
 Program memory 
 General datapath with large register file and 

general ALU 

• User benefits 
 Low time-to-market and NRE costs 
 High flexibility 

• Drawbacks 

 High unit cost 

 Low Performance 

IR PC 
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Basic architecture 

 Control unit and 

datapath 

 Note similarity to single-

purpose processor 

 Key differences 

 Datapath is general 

 Control unit doesn’t store 

the algorithm – the 

algorithm is 

“programmed” into the 

memory 

 



Datapath 

 Load 

 Read memory location 
into register  

• ALU operation 

– Input certain registers 
through ALU, store 
back in register 

• Store 

– Write register to 
memory location 



Control Unit 

 Control unit: configures the datapath 
operations 

 Sequence of desired operations 
(“instructions”) stored in memory – 
“program”  

 Instruction cycle – broken into several 
sub-operations, each one clock cycle, 
e.g.: 

 Fetch: Get next instruction into IR 

 Decode: Determine what the instruction 
means 

 Fetch operands: Move data from 
memory to datapath register 

 Execute: Move data through the ALU 

 Store results: Write data from register 
to memory 



Control Unit  sub - operation 

 Fetch 

 Get next instruction 

into IR 

 PC: program 

counter, always 

points to next 

instruction 

 IR: holds the 

fetched instruction 



Control Unit  sub - operation 

 Decode 

 Determine what the 

instruction means 



Control Unit sub - operation 

 Fetch operands 

 Move data from 

memory to 

datapath register 



Control Unit - sub operation 

 Execute 

 Move data through 

the ALU 

 This particular 

instruction does 

nothing during this 

sub-operation 



Control Unit  sub - operation 

 Store results 

 Write data from 

register to memory 

 This particular 

instruction does 

nothing during this 

sub-operation 



Instruction Cycles 



Instruction Cycles 



Instruction Cycles 



Architectural Considerations 

 N-bit processor 

 N-bit ALU, registers, 

buses, memory data 

interface 

 Embedded: 8-bit, 16-bit, 

32-bit common 

 Desktop/servers: 32-bit, 

even 64 

 PC size determines address 

space 



Architectural Considerations 

 Clock frequency 

 Inverse of clock 

period 

 Must be longer than 

longest register to 

register delay in 

entire processor 

 Memory access is 

often the longest 
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General-purpose processors 
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General-purpose processors 

  addi r1, r0, 0 

  addi r3, r0, 0 

Loop:  lw r4,M(r1)‏ 

  addi r1,r1,4 

  slti r2, r1, 40 

  add r3,r3,r4 

  bnez r2, loop  

total = 0; 

for (i = 0; i< N; i++)  

   total += M[i]; 

 



How to improve performance 

 Improve frequency ( depends on IC technology) 

 They increase the number of instructions/data 

executed in the same clock cycle 

 Temporal parallelism (pipeline) 

 Spatial parallelism  

 Instruction Level Parallelism (Superscalar, VLIW,  ..) 

 Data level Parallelism (SIMD processors) 



Pipelining 

Performance optimization technique based on the overlap 

of the execution of multiple instructions deriving from a 

sequential execution flow. 

• Pipelining exploits the parallelism among instructions 

in a sequential instruction stream. 

• Basic idea: 

The execution of an instruction is divided into different 

phases (pipelines stages), requiring a fraction of the time 

necessary to complete the instruction. 

• The stages are connected one to the next to form the 

pipeline: instructions enter in the pipeline at one end, 

progress through the stages, and exit from the other 

end, as in an assembly line. 
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Pipelining: Increasing Instruction Throughput 

IFetch 0 

T0 

IDec 0 

T1 

IExe 0 

T2 

IMem 0 

T3 

IWrB 0 

T4 

IFetch 1 

T5 

IDec 1 

T6 

IExe 1 

T7 

IMem 1 

T8 

IWrB 1 

T9 

IFetch 2 

T10 

IDec 3 

T11 

IFetch 0 

T0 

IDec 0 

T1 

IFetch 1 

IExe 0 

T2 

IDec 1 

IFetch 2 

IMem 0 

T3 

IExe 1 

IDec 2 

IFetch 3 

IWrB 0 

T4 

IMem 1 

IExe 2 

IDec 3 

IFetch 4 

IWrB 1 

IMem 2 

IExe 3 

IDec 4 

T5 

IFetch 5 

IWrB 2 

IMem 3 

IExe 4 

T6 

IDec 5 

IFetch 6 

IWrB 3 

IMem 4 

T7 

IExe 5 

IDec 6 

IFetch 7 

IWrB 4 

T8 

IMem 5 

IExe 6 

IDec 7 

T9 

IWrB 5 

IMem 6 

IExe 7 

T10 

IWrB 6 

IMem 7 

T11 

IWrB 7 



45 

General-purpose processors 
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The Problem of Hazards 

• A hazard is created whenever there is a dependence 

between instructions, and instructions are close enough that 

the overlap caused by pipelining would change the order of 

access to the operands involved in the dependence. 

• Hazards prevent the next instruction in the pipeline from 

executing during its designated clock cycle. 

• Hazards reduce the performance from the ideal speedup 

gained by pipelining. 



Three Classes of Hazards 

• Structural Hazards: Attempt to use the same resource 

from different instructions simultaneously 

- Example: Single memory for instructions and data 

• Data Hazards: Attempt to use a result before it is 

ready 

- Example: Instruction depending on a result of a 

previous instruction still in the pipeline 

• Control Hazards: Attempt to make a decision on the 

next instruction to execute before the condition is 

evaluated 

- Example: Conditional branch execution 



Structural hardware 

 Two solutions 

 Hardware duplication 

 Insertion of “bubbles” or stalls in the pipeline 



Data Hazards 



Data Hazards 

 Compilation techniques 

 Insertion of nop (no operation) instructions 

 Instructions Scheduling to avoid that correlating 

instructions are too close 

 The compiler tries to insert independent instructions among 

correlating instructions 

 When the compiler does not find independent instructions, it 

Insert nops. 

 Hardware techniques 

 Insertion of “bubbles” or stalls in the pipeline 

 Data Forwarding or Bypassing 



Data Forwarding 



Forwarding implementation 



Forwarding implementation 



Data hazard with lw 



Data hazard with lw 

1 stall cycle is required 



Hazard Detection Unit 



Data Hazards 

Data hazards analyzed up to now are: 

– RAW (READ AFTER WRITE) hazards: 

instruction n+1 tries to read a source register before the 

previous instruction n has written it in the RF. 

 

Example: 

add $r1, $r2, $r3 

sub $r4, $r1, $r5 

 

• By using forwarding, it is always possible to solve this conflict 

without introducing stalls, except for the load/use hazards 

where it is necessary to add one stall 



Data Hazards 

 Other types of data hazards in the pipeline: 

 WAW (WRITE AFTER WRITE) 

 WAR (WRITE AFTER READ) 



Data Hazard: Write After Write 

 Instruction n+1 tries to write a destination operand before 

it has been written by the previous instruction n 

⇒ write operations executed in the wrong order 

 This type of hazards could not occur in the MIPS pipeline 

because all the register write operations occur in the WB 

stage and instructions are completed in order 

n:  lw $r1, 0($r2) 

n+1: add $r1,$r2,$r3 



Data Hazard: Write After Write 

 Example: If we assume the register write in the ALU instructions 

occurs in the fourth stage and that load instructions require two 

stages (MEM1 and MEM2) to access the data memory, we can 

have: 

IFetch  

T0 
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T1 

IExe  

T2 

IMem 1 

T3 

IMem 2 

T4 

IWB 

T5 

IFetch  IDec  IExe  IWB  

lw $r1, 0($r2) 

add $r1,$r2,$r3 



Data Hazard: Write After Read 

 Instruction n+1 tries to write a destination operand before it 

has been read from the previous instruction n 

 ⇒ instruction n reads the wrong value. 

 This type of hazards could not occur in the MIPS pipeline 

because the operand read operations occur in the ID stage 

and the write operations in the WB stage. 

n:   sw $r1, 0($r2) 

n+1: add $r2, $r3, $4 



Data Hazard: Write After Read 

 As before, if we assume the register write in the ALU 

instructions occurs in the fourth stage and that we need two 

stages to access the data memory, some instructions could read 

operands too late in the pipeline. 

 Example: Instruction sw reads $r2 in the second half of MEM2 

stage and instruction add writes $r2 in the first half of WB 

stage ⇒ sw reads the new value of $r2. 

IFetch  

T0 

IDec 

T1 

IExe 

T2 

IMem 1 

T3 

IMem 2 

T4 

IWB 

T5 

IFetch  IDec  IExe  IWB  

sw $r1, 0($r2) 

add $r2, $r3, $4 



Control Hazards 

 Control hazards: Attempt to make a decision on the 

next instruction to fetch before the branch condition is 

evaluated. 

 Control hazards arise from the pipelining of 

conditional branches and other instructions changing 

the PC. 

 Control hazards reduce the performance from the 

ideal speedup gained by the pipelining since they 

can make it necessary to stall the pipeline. 



Branch hazards 

 To feed the pipeline we need to fetch a new instruction at each 

clock cycle, but the branch decision (to change or not change 

the PC) is taken during the MEM stage. 
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Branch hazards 

 This delay to determine the correct instruction to fetch is 

called Control Hazard or Conditional Branch Hazard 

 If a branch changes the PC to its target address, it is a 

taken branch 

 If a branch falls through, it is not taken or untaken. 



Branch hazards: solutions 

 To stall the pipeline until the branch decision is taken (stalling until 

resolution) and then fetch the correct instruction flow. 

 If the branch is not taken, the three cycles penalty is not justified ⇒ 

throughput reduction. 

IF Branch successor + 5 

ID IF Branch successor + 4 

EX ID IF Branch successor + 3 

MEM EX ID IF Branch successor + 2 

WB MEM EX ID IF Branch successor + 1 

WB MEM EX ID IF stall stall IF Branch successor 

WB MEM EX ID IF Branch instruction 



Branch hazards: solutions 

 We can assume the branch not taken, and flush the next 3 

instructions in the pipeline only if the branch will be taken. 
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Early Evaluation of the PC 

 To improve performance in case of branch hazards, 

we need to add hardware resources to: 

 Compare registers 

 Compute branch target address 

 Update the PC register as soon as possible in the 

pipeline. 

 MIPS processor compares registers, computes 

branch target address and updates PC during ID 

stage. 



Early Evaluation of the PC 
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Branch Prediction Techniques 

 Main goal of branch prediction techniques: try to predict ASAP 

the result of a branch instruction. 

 In general, the problem of the branch prediction becomes worse 

for deeply pipelined processors because the cost of incorrect 

predictions increases 

 The performance of a branch prediction technique depends on:  

 Accuracy measured in terms of percentage of incorrect predictions. 

 Cost of a incorrect prediction measured in terms of time lost to 

execute useless instructions (misprediction penalty). 

 We also need to consider branch frequency: the importance of 

accurate branch prediction is higher in programs with higher 

branch frequency. 



Branch Prediction Techniques 

 There are many methods to deal with the performance loss 

due to branch hazards: 

 Static Branch Prediction Techniques: The actions for a branch are 

fixed for each branch during the entire execution. The actions are 

fixed at compile time. 

 Dynamic Branch Prediction Techniques: The decision causing the 

branch prediction can change during the program execution. 

 In both cases, care must be taken not to change the processor 

state until the branch is definitely known. 



Static Branch Prediction Techniques 

 Branch Always Not Taken (Predicted-Not-Taken) 

 Execute successor instructions in sequence 

 “Squash” instructions in pipeline if branch actually taken 

 Advantage of late pipeline state update 

 47% DLX branches not taken on average   

 Branch Always Taken (Predicted-Taken) 

 53% DLX branches taken on average 

 But haven’t calculated branch target address in MIPS 

 DLX still incurs 1 cycle branch penalty 

 Other machines: branch target known before outcome 

 Backward Taken Forward Not Taken (BTFNT) 

 



Static Branch Prediction Techniques 

 Delayed Branch 

 The instruction in the branch delay slot is executed whether or not the 

branch is taken. 

 The compiler statically schedules an independent instruction in the branch 

delay slot. 

 



Branch delay slot 

(a)  From before (b)  From target (c)  From fall through 

SUB R4, R5, R6  
  

  
ADD R1, R2, R3  
  
if R1 = 0 then  
  
  

ADD R1, R2, R3  
  

if R1 = 0 then  
  
   
  
SUB R4, R5, R6 

ADD R1, R2, R3  
  
if R1 = 0 then  
  

      SUB R4, R5, R6 

  
  
  
ADD R1, R2, R3  
  
if R1 = 0 then  
  
      SUB R4, R5, R6 

ADD R1, R2, R3  
  

if R2 = 0 then  
  
     

  
  
if R2 = 0 then  
  

      ADD R1, R2, R3 

Becomes Becomes Becomes 

Delay slot 

Delay slot 

Delay slot 

SUB R4,R5,R6 



Dynamic Branch Prediction 

 Basic Idea: To use the past branch behavior to 

predict the future. 

 We use hardware to dynamically predict the 

outcome of a branch: the prediction will depend on 

the behavior of the branch at run time and will 

change if the branch changes its behavior during 

execution. 



Dynamic Branch Prediction 

 Dynamic branch prediction is based on two interactive 

mechanism: 

 Branch Outcome Predictor: 

 To predict the direction of a branch (i.e. taken or not taken). 

 Branch Target Predictor: 

 To predict the branch target address in case of taken 

branch. 

 These modules are used by the Instruction Fetch Unit to 

predict the next instruction to read in the I-cache. 

 If branch is not taken ⇒ PC is incremented. 

 If branch is taken ⇒ BTP gives the target address 



Branch Prediction Buffers 

 The simplest thing to do with a branch is to predict 
whether or not it is taken.  

 

 This helps in pipelines where the branch delay is longer 
than the time it takes to compute the possible target 
PCs .  
 If we can save the decision time, we can branch sooner.  

 

 Note that this scheme does NOT help with the MIPS we 
studied.  
 Since the branch decision and target PC are computed in ID, assuming 

there is no hazard on the register tested.  

 



Branch-Prediction Buffers 
One-bit Prediction Scheme 

 Is a  buffer (cache) (BHT - Branch History Table) indexed by the 

lower portion of the address of the branch instruction 

• The memory contains a bit that says whether the branch was 

recently taken or not 

• It has no tag 

 It may have been put there by another branch (that has the same low-

order address bits) 

• The prediction is a hint that is presumed to be correct, and fetching 

begins in the predicted direction 

 If the hint turns out to be wrong, the prediction bit is inverted and stored 

back 

 The branch direction could be incorrect because:  
• misprediction  

• Instruction mismatch  

• In either case, the worst that happens is that you have to pay the full 

latency for the branch.  

 



 Consider a loop branch whose behavior is taken nine times in a row, 

then not taken once. What is the prediction accuracy for this branch, 

assuming the prediction bit for this branch remains in the prediction 

buffer? 

Branch Prediction

Taken ?

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken

Taken Not taken

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken

Taken Not taken

Taken Taken

Taken Taken

… …

 The prediction accuracy for this branch that is 

taken 90% of the time is only 80% (two 

incorrect predictions and eight correct ones). 

Branch-Prediction Buffers 
One-bit Prediction Scheme 



Branch-Prediction Buffers 
Two-bit Prediction Scheme 

 A prediction must miss twice before is changed 

 The prediction accuracy for this branch that is 

taken 90% of the time is 90% (one incorrect 

predictions and nine correct ones) 

 The two-bit scheme is actualy a specialization of 

a more general scheme that has n-bit saturating 

counter for each entry in the prediction buffer 

Branch Prediction

Taken ?

Taken ?

Taken Taken

… Taken

Taken Taken

Not taken Taken (miss)

Taken Taken

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken (miss)

Taken Taken

Taken Taken

Taken Taken

… …

Predict 

taken 

Predict 

taken 

Predict 

not taken 

Predict 

not taken 

Taken 

Not taken 

Not taken 

Taken 

Not taken 

Taken 

Taken Not taken 



n-bit Branch History Table 

 Generalization: n-bit saturating counter for each entry in the 

prediction buffer. •  

 The counter can take on values between 0 and 2 n-1 •  

 When the counter is greater than or equal to one-half of its maximum 

value (2 n-1), the branch is predicted as taken. •  

 Otherwise, it is predicted as untaken.  

  As in the 2-bit scheme, the counter is incremented on a taken 

branch and decremented on an untaken branch.  

 Studies on n-bit predictors have shown that 2-bit predictors 

behave almost as well 



Branch Prediction Buffer 

 A branch prediction buffer can be implemented as 

A small special cache accessed with the instruction address during 

the IF pipe stage 

A pair of bits attached to each block in the instruction cache and 

fetched with the instruction 

 While this scheme is useful for most pipelines, the DLX 

pipeline finds out both whether the branch is taken and 

what the target of the branch is at roughly the same time 



Branch Prediction Buffer 
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Correlating Branches 

Code example showing 

the potential 

 

If (d==0) 

  d=1; 

If (d==1) 

  … 

Assemble code 

 

 

    BNEZ R1, L1 

    DADDIU R1,R0,#1 

L1: DADDIU R3,R1,#-1 

    BNEZ R3, L2 

L2: 

… Observation: if BNEZ1 is not taken, then BNEZ2  
is taken 



Correlating Branch Predictor 

 Idea: taken/not taken of 
recently executed branches is 
related to behavior of next 
branch (as well as the history 
of that branch behavior) 

 Then behavior of recent 
branches selects between, 
say, 2 predictions of next 
branch, updating just that 
prediction  

 (1,1) predictor: 1-bit global, 
1-bit local 

Branch address (4 bits) 

1-bits per branch  
local predictors 

Prediction 

1-bit global  
branch history 
(0 = not taken) 



Correlating Branch Predictor 

 General form: (m, n) predictor 

 m bits for global history, n 
bits for local history 

 Records correlation between 
m+1 branches 

 Simple implementation: 
global history can be store 
in a shift register 

 Example: (2,2) predictor, 2-
bit global, 2-bit local 

Branch address (4 bits) 

2-bits per branch  
local predictors 

Prediction 

2-bit global  
branch history 

(01 = not taken then taken) 



Accuracy v. Size (SPEC89) 
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Return Addresses Prediction 

 Register indirect branch hard to predict address 

 Many callers, one callee 

 Jump to multiple return addresses from a single address (no 

PC-target correlation) 

 SPEC89 85% such branches for procedure return 

 Since stack discipline for procedures, save return 

address in small buffer that acts like a stack: 8 to 16 

entries has small miss rate 
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Accuracy of Return Address Predictor 



Branch-Target Buffers 

 To reduce the branch penalty on DLX, we need to 

know from what address to fetch by the end of IF 

If the instruction is a branch and we know what the next 

PC should be, we can have a branch penalty of zero! 

Branch-Target Buffer (BTB) 

Is a cache that stores the predicted address for the next 

instruction after a branch 

It is accessed during the IF stage using the instruction 

address of the fetched instruction 

It only stores the predicted-taken brances 



Branch Target Buffer 

 Branch Target Buffer (BTB): Address of branch index to get prediction AND branch 

address (if taken) 

 Note: must check for branch match now, since can’t use wrong branch address 

 

 

 

 

 

 

 

 

Branch PC Predicted PC 

=? 

PC
 of instruction 

F
E
T
C
H
 

Predict taken or untaken 



BTB 

 Allocation 

 Allocate instructions identified as branches (after decode) 

 Both conditional and unconditional branches are allocated 

 Not taken branches need not be allocated 

 BTB miss implicitly predicts not-taken 

 Prediction 

 BTB lookup is done parallel to IC lookup 

 BTB provides 

 Indication that the instruction is a branch (BTB hits) 

 Branch predicted target 

 Branch predicted direction 

 Branch predicted type (e.g., conditional, unconditional) 

 Update (when branch outcome is known) 

 Branch target 

 Branch history (taken / not-taken) 



BTB (cont.) 

 Wrong prediction 

 Predict not-taken, actual taken 

 Predict taken, actual not-taken 

 In case of wrong prediction – flush the pipeline 

 Reset latches (same as making all instructions to be NOPs) 

 Select the PC source to be from the correct path 

 Need get the fall-through with the branch 

 Start fetching instruction from correct path 



Adding a BTB to the Pipeline 
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Using The BTB 

PC moves to next instruction 

Inst Mem gets PC 

and fetches new inst 

BTB gets PC 

and looks it up 

IF/ID latch loaded 

with new inst 

BTB Hit ? 

Br taken ? 

PC  PC + 4 PC  perd addr 

IF 

ID 
IF/ID latch loaded 

with pred inst 

IF/ID latch loaded 

with seq. inst Branch ? 

yes no 

no yes 

no yes EXE 



Using The BTB (cont.) 

ID 

EXE 

MEM 

WB 

Branch ? 

Calculate br 

cond & trgt 

Flush pipe & 

update PC 

Corect  

pred ? 

yes no 

IF/ID latch loaded 

with correct inst 

continue 

Update BTB 

yes no 

continue 



Performance Improvement 

• Performance can be improved by: 

– Faster clock (but there’s a limit)‏ 

– Pipelining: slice up instruction into stages, overlap stages 

– Multiple ALUs to support more than one instruction 
stream 

 



Superscalar 

 Multiple ALU which can operate in parallel 

 Fetches instructions in batches,  

 Executes as many as possible instructions 

 Instructions without hazards can be executed in 
parallel 

 May require extensive hardware to detect 
independent instructions (dynamic scheduling) 

 Out of order execution 

 Illusion of in order sequential execution ( from 
the point of view of programmer/compiler 

 A superscalar implementation does not change 
instruction Set Architecture 



Superscalar 

I Issue

E
int

E

FP add

E

FPmul1

E

FPmul2

W

1

7

4

24E

FP div

7

M

ScoreboardScoreboard

R

R

R

R

RCompletes when:
•Funcional unit is 

not busy
•Destination 
register not 

pending (prevent 
WAW)

Completes when:
•Source operand is 
ready

Completes when:
•No func.unit is 
waiting for this 

register from a 
different func.unit



VLIW 

• Each word in memory has multiple independent 

instructions 

• Rely on software for identifying potential parallelism 

and schedule instructions (static scheduling) 

• Processors expect dependency-free code generated 

by the compiler 

• No hardware scheduler, no hardware management of 

hazards  

• VLIW can be smaller, cheaper, and require less 

power to operate 

• Currently growing in popularity 



VLIW 

 

Instruction  

Register 
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Two Memory Architectures 

Processor 

Program 

memory 

Data 

memory 

Processor 

Memory 

(program and data) 

Harvard Princeton 

 Princeton 

 Fewer memory wires 

 Harvard 

 Simultaneous 

program and data 

memory access 
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Cache Memory 

 Memory access may be slow 

 Cache is small but fast 

memory close to processor 

 Holds copy of part of 

memory 

 Hits and misses 

Processor 

Memory 

Cache 

Fast/expensive technology, 

usually on the same chip 

Slower/cheaper technology, 

usually on a different chip 
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Programmer’s View 

 Programmer doesn’t need detailed understanding of 

architecture 

 Instead, needs to know what instructions can be executed 

 Two levels of instructions: 

 Assembly level 

 Structured languages (C, C++, Java, etc.) 

 Most development today done using structured languages 

 But, some assembly level programming may still be necessary 

 Drivers: portion of program that communicates with and/or controls 

(drives) another device 

 Often have detailed timing considerations, extensive bit manipulation 

 Assembly level may be best for these 
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Assembly-Level Instructions 

opcode operand1 operand2 

opcode operand1 operand2 

opcode operand1 operand2 

opcode operand1 operand2 

... 

Instruction 1 

Instruction 2 

Instruction 3 

Instruction 4 

 Instruction Set 

 Defines the legal set of instructions for that processor 

 Data transfer: memory/register, register/register, I/O, etc. 

 Arithmetic/logical: move register through ALU and back 

 Branches: determine next PC value when not just PC+1 
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A Simple (Trivial) Instruction Set 

       opcode                         operands 

MOV Rn, direct 

MOV @Rn, Rm 

ADD Rn, Rm 

0000 Rn direct 

0010 Rn 

0100 Rm Rn 

Rn = M(direct) 

Rn = Rn + Rm 

SUB Rn, Rm 0101 Rm Rn = Rn - Rm 

MOV Rn, #immed. 0011 Rn immediate Rn = immediate 

Assembly instruct. First byte Second byte Operation 

JZ  Rn, relative 0110 Rn relative PC = PC+ relative 

   (only if Rn is 0) 

Rn 

MOV direct, Rn 0001 Rn direct M(direct) = Rn 

Rm M(Rn) = Rm 

Mem Direct 

Mem Direct 

Register indirect 

Immediate 

Register direct 

Register direct 
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Addressing Modes 

Data 

Immediate 

Register-direct 

Register 

indirect 

Direct 

Indirect 

Data 

Operand field 

Register address 

Register address 

Memory address 

Memory address 

Memory address Data 

Data 

Memory address 

Data 

Addressing 

mode 

Register-file 

contents 

Memory 

contents 
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Sample Programs 

int total = 0; 

for (int i=10; i!=0; i--) 

   total += i; 

// next instructions... 

C program 

MOV R0, #0;           // total = 0 

MOV R1, #10;         // i = 10 

JZ R1, Next;            // Done if i=0 

ADD R0, R1;           // total += i 

MOV R2, #1;           // constant 1 

JZ R3, Loop;            // Jump always 

Loop: 

Next: // next instructions... 

SUB R1, R2;            // i-- 

Equivalent assembly program 

MOV R3, #0;           // constant 0 

0 

1 

2 

3 

5 

6 

7 

 Try some others 

 Handshake: Wait until the value of M[254] is not 0, set M[255] to 1, wait 
until M[254] is 0, set M[255] to 0 (assume those locations are ports). 

 (Harder) Count the occurrences of zero in an array stored in memory 
locations 100 through 199.  
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Programmer Considerations 

 Program and data memory space 

 Embedded processors often very limited 

 e.g., 64 Kbytes program, 256 bytes of RAM (expandable) 

 Registers: How many are there? 

 Only a direct concern for assembly-level programmers 

 I/O 

 How communicate with external signals? 

 Interrupts 
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Microprocessor Architecture 

Overview 

 If you are using a particular microprocessor, now is 

a good time to review its architecture 
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Example: parallel port driver 

 Using assembly language programming we can configure a PC 

parallel port to perform digital I/O 

 write and read to three special registers to accomplish this table provides 

list of parallel port connector pins and corresponding register location 

 Example : parallel port monitors the input switch and turns the LED on/off 

accordingly 

 

PC Parallel port

Pin 13

Pin 2

Switch

LED

LPT Connection Pin I/O Direction Register Address 

1 Output 0th bit of register #2  

 
2-9 Output 0th bit of register #2 

14,16,17 Output 1,2,3th bit of register #2 

10,11,12,13,15 Input 6,7,5,4,3th bit of register #1 
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Parallel Port Example 

; This program consists of a sub-routine that reads 

; the state of the input pin, determining the on/off state 

; of our switch and asserts the output pin, turning the LED 

; on/off accordingly 

 .386 

 

CheckPort proc 

 push ax  ; save the content 

 push dx  ; save the content 

 mov dx, 3BCh + 1 ; base + 1 for register #1 

 in al, dx  ; read register #1 

 and  al, 10h ; mask out all but bit # 4 

 cmp al, 0  ; is it 0? 

 jne SwitchOn ; if not, we need to turn the LED on 

 

SwitchOff: 

 mov dx, 3BCh + 0 ; base + 0 for register #0 

 in al, dx  ; read the current state of the port 

 and al, f7h ; clear first bit (masking) 

 out dx, al  ; write it out to the port 

 jmp Done          ; we are done 

 

SwitchOn: 

 mov dx, 3BCh + 0 ; base + 0 for register #0 

 in al, dx  ; read the current state of the port 

 or al, 01h ; set first bit (masking) 

 out dx, al  ; write it out to the port 

  

Done:  pop dx  ; restore the content 

 pop ax  ; restore the content 

CheckPort endp 

extern “C” CheckPort(void); // defined in  

     // assembly  

void main(void) { 

 while( 1 ) { 

  CheckPort(); 

 } 

} 

LPT Connection Pin I/O Direction Register Address 

1 Output 0th bit of register #2

  

 
2-9 Output 0th bit of register #2 

14,16,17 Output 1,2,3th bit of register #2 

10,11,12,13,15 Input 6,7,5,4,3th bit of register 

#1 

PC Parallel port

Pin 13

Pin 2

Switch

LED
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Operating System 

 Optional software layer 
providing low-level services to 
a program (application). 

 File management, disk access 

 Keyboard/display interfacing 

 Scheduling multiple programs 
for execution 

 Or even just multiple threads from 
one program 

 Program makes system calls to 
the OS 

 

DB file_name “out.txt” -- store file name 

 

MOV R0, 1324           -- system call “open” id 

MOV R1, file_name      -- address of file-name 

INT 34                 -- cause a system call 

JZ  R0, L1             -- if zero -> error 

 

   . . . read the file 

JMP L2                 -- bypass error cond. 

L1: 

   . . . handle the error 

 

L2: 



Development Environment 

 Development processor 

 The processor on which we write and debug our programs 

 Usually a PC 

 Target processor 

 The processor that the program will run on in our embedded system  

 Often different from the development processor 

Development processor Target processor 
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Software Development Process 

Compiler 

Linker 

C File C File Asm. 

File 

Binary 

File 

Binary 

File 

Binary 

File 

Exec. 

File 

Assemble

r 

Library 

Implementation Phase 

Debugger 

Profiler 

Verification Phase 

 Compilers 

 Cross compiler 

 Runs on one 

processor, but 

generates code 

for another 

 Assemblers 

 Linkers 

 Debuggers 

 Profilers 
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Running a Program 

 If development processor is different than target, 

how can we run our compiled code? Two options: 

 Download to target processor 

 Simulate 

 Simulation 

 One method: Hardware description language 

 But slow, not always available 

 Another method: Instruction set simulator (ISS) 

 Runs on development processor, but executes instructions of 

target processor 
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Instruction Set Simulator For A 

Simple Processor 
#include <stdio.h> 

typedef struct { 

   unsigned char first_byte, second_byte; 

} instruction; 

 

instruction program[1024];  //instruction memory 

unsigned char memory[256];  //data memory 

 

void run_program(int num_bytes) { 

 

   int pc = -1; 

   unsigned char reg[16], fb, sb; 

    

   while( ++pc < (num_bytes / 2) ) { 

      fb = program[pc].first_byte; 

      sb = program[pc].second_byte; 

      switch( fb >> 4 ) { 

         case 0: reg[fb & 0x0f] = memory[sb]; break; 

         case 1: memory[sb] = reg[fb & 0x0f]; break; 

         case 2: memory[reg[fb & 0x0f]] =  

                 reg[sb >> 4];  break; 

         case 3: reg[fb & 0x0f] = sb; break; 

         case 4: reg[fb & 0x0f] += reg[sb >> 4]; break; 

         case 5: reg[fb & 0x0f] -= reg[sb >> 4]; break; 

         case 6: pc += sb; break; 

         default: return –1; 

       

 

} 

   } 

   return 0; 

} 

 

int main(int argc, char *argv[]) { 

 

   FILE* ifs; 

 

   If( argc != 2 ||  

       (ifs = fopen(argv[1], “rb”) == NULL ) { 

            return –1; 

   } 

   if (run_program(fread(program,  

       sizeof(program) == 0) { 

 print_memory_contents(); 

 return(0); 

   } 

   else return(-1); 

} 
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Testing and Debugging 

Implementation 

Phase 

 

Implementation 

Phase 

 

Verification 

Phase 

 

Verification 

 Phase 

Emulator 

Debugger

/ ISS 

Programmer 

Development processor 

(a) (b) 

External tools 

 ISS  

 Gives us control over time – set 
breakpoints, look at register 
values, set values, step-by-step 
execution, ... 

 But, doesn’t interact with real 
environment 

 Download to board 

 Use device programmer 

 Runs in real environment, but 
not controllable 

 Compromise: emulator 

 Runs in real environment, at 
speed or near 

 Supports some controllability 
from the PC 
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Application-specific processors 

• Programmable processor optimized for a 

particular class of applications having common 

characteristics 
 Compromise between general-purpose and single-

purpose processors 

• Features 
 Program memory 

 Optimized datapath 

 Special functional units 

• Benefits 
 Some flexibility, good performance, size and power 

• Drawbacks 

 High NRE cost (processor and compiler)‏ 

• Examples: Microcontroller, DSP 

IR PC 

Registers 

Custom 

ALU 

Datapath Controller 

Program 

memory 

Assembly code 

for: 
 

 total = 0; 

 for(i =0;i<N;i++)  

     total+=M[i]; 

Control  

logic and 

State register 

Data 

memory 
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Application-Specific Instruction-Set 

Processors (ASIPs) 

 General-purpose processors 

 Sometimes too general to be effective in demanding 
application 

 e.g., video processing – requires huge video buffers and 
operations on large arrays of data, inefficient on a GPP 

 But single-purpose processor has high NRE, not 
programmable 

 ASIPs – targeted to a particular domain 

 Contain architectural features specific to that domain 

 e.g., embedded control, digital signal processing, video 
processing, network processing, telecommunications, etc. 

 Still programmable 



A Common ASIP: Microcontroller 

• For embedded control applications 
– Reading sensors, setting actuators 

– Mostly dealing with events (bits): data 
is present, but not in huge amounts 

– e.g., VCR, disk drive, digital camera 
(assuming SPP for image 
compression), washing machine, 
microwave oven 

•Microcontroller features 
– On-chip peripherals 

• Timers, analog-digital converters, serial communication, etc. 

• Tightly integrated for programmer, typically part of register 
space 

– On-chip program and data memory 

– Direct programmer access to many of the chip’s pins 

– Specialized instructions for bit-manipulation and other low-
level 



Digital Signal Processors (DSP)‏ 

• For signal processing applications 

– Large amounts of digitized data, often streaming 

– Data transformations must be applied fast 

– e.g., cell-phone voice filter, digital TV, music synthesizer 

• DSP features 

– Several instruction execution units 

– Multiple-accumulate single-cycle instruction, other instrs. 

– Efficient vector operations – e.g., add two arrays 

• Vector ALUs, loop buffers, etc. 



Trend: Even More Customized ASIPs 

 In the past, microprocessors were acquired as chips 

 Today, we increasingly acquire a processor as Intellectual 
Property (IP) 

 e.g., synthesizable VHDL model 

 Opportunity to add a custom datapath hardware and a few 
custom instructions, or delete a few instructions 

 Can have significant performance, power and size impacts 

 Problem: need compiler/debugger for customized ASIP 

 Remember, most development uses structured languages 

 One solution: automatic compiler/debugger generation 

 e.g., www.tensillica.com 

 Another solution: retargettable compilers 

 e.g., www.improvsys.com (customized VLIW architectures) 

http://www.tensillica.com/
http://www.improvsys.com/

